o Sì, segno qua una X sul circoletto perchè sono uno studente di anni passati <u>e diverso docente</u> e desidero anche un esame orale, e consegno questo foglio piegato in 2 insieme alla bella copia.

Chi si ritira, consegna <u>solo</u> questo foglio: col nome e una grande R. Gli altri, tengono per sè questo foglio, e consegnano solo i fogli di bella copia piegati in due, tutti insieme.

RIQUADRARE ovvero incorniciare I RISULTATI

Legenda

- * è richiesto il valore esatto. Può anche essere $+\infty$, $-\infty$, o una frase.
- \approx è richiesta una ragionevole approssimazione.
- % è richiesto il valore in percentuale, se serve ragionevolmente approssimato.
 - ⊕ In questo tema d'esame possono comparire entrambi gli standard del punto decimale e della virgola decimale.
- ⊜ In ogni esercizio in cui nel quesito o nello svolgimento compaiono numeri che in italiano diciamo *con la virgola*, scrivere all'inizio dello svolgimento se è usato lo standard del punto o della virgola decimale.

ESERCIZIO 0. Triplice – quesiti basici – chi non risolve almeno 2 non passa l'esame – per ricevere più di 18 risolvere tutti 3.

ESERCIZIO 0a_{μ} * Calcolare $9 - 3 \cdot 2 - 6/3$.

SVOLGIMENTO

Con attenzione alle precedenze delle operazioni si ha successivamente

$$= 9 - 6 - 2 =$$

$$= 3 - 2 =$$

ESERCIZIO 0
b_{{}_{\mu}}* Calcolare $D\,\frac{1}{x}$ (Solo risultato, senza passaggi).

SVOLGIMENTO

Ad abundantiam, su questo testo facciamo qualche passaggio.

$$D\frac{1}{x} = Dx^{-1} = -1 \cdot x^{-2} =$$

$$-\frac{1}{x^2}$$

ESERCIZIO $\mathbf{0c}_{\mu}$ % Calcolare P(1 moneta lanciata 2 volte dà 2 teste).

SVOLGIMENTO

Si userà lo standard del punto decimale.

- = P(la prima moneta dà testa) = P(la prima moneta dà testa) = P(la prima moneta dà testa)
- $= P(\text{la prima moneta dà testa}) \cdot P(\text{la seconda moneta dà testa}) =$

$$=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}=0.25=$$

25%

ESERCIZIO 1_" *

Supponiamo che dal Ministero arrivi alle Farmacie una circolare che impone di inviargli una segnalazione se arriva un cliente con

tosse O nelle ultime 48 ore febbre oltre 38,5°C

 \mathbf{E}

naso che cola O non vaccinato.

Riconosciuto fra questi 4 il calcolo logico da fare

$$(p \vee q) \wedge (\neg(r \vee s))$$

$$(p \land q) \lor (\neg(r \land s))$$
$$(p \lor q) \land (r \lor \neg s)$$
$$(p \land q) \lor (r \land \neg s)$$

lo si svolga, indicando con V il valore di verità vero, con F quello falso, con ? quello sconosciuto, fino a determinare se la segnalazione va inviata per un cliente con tosse, naso che cola, vaccinato.

SVOLGIMENTO

Viene usato lo standard della virgola decimale.

Chiaramente la terza espressione esprime le condizioni poste.

In effetti non sappiamo se il cliente ha avuto febbre oltre 38,5°C nelle ultime 48 ore o no e allora indichiamo con? il valore di verità di q:

V p := "ha la tosse"

? q := "ha avuto febbre oltre 38,5°C

V r := "ha il naso che cola"

V s := "è vaccinato".

Si ha successivamente

$$(V \lor ?) \land (V \lor \neg V)$$

Sia $V \vee V$ che $V \vee F$ danno V, vero,

$$V \wedge (V \vee F)$$

$$V \wedge V$$

V

La segnalazione va inviata

ESERCIZIO $\mathbf{2}_{\scriptscriptstyle \mu} \approx$

Risolvere

$$5 \ln \pi^2 = \lg \sqrt{\pi^x}$$

dando il risultato approssimato all'intero.

SVOLGIMENTO

Si userà lo standard del punto decimale.

Per le proprietà del logaritmo della potenza e della radice quadrata

$$5 \cdot 2 \ln \pi = \frac{1}{2} \lg \pi^x$$

per la proprietà del logaritmo della potenza

$$10 \ln \pi = \frac{1}{2} x \lg \pi \qquad / \cdot \frac{2}{\lg \pi}$$

$$x = 20 \frac{\ln \pi}{\lg \pi} =$$

con la formula approssimata di cambiamento di base l
g $a\approx 0.4343\ln a$

$$\approx 20 \frac{\ln \pi}{0.4343 \ln \pi} = 20 \frac{1}{0.4343} \approx$$

con il livello di approssimazione richiesto

46

ESERCIZIO $3_{_{\mu}} \approx$

Calcolare

$$\sum_{n=0}^{+\infty} \frac{1}{\varphi^n}$$

essendo φ la sezione aurea.

SVOLGIMENTO

Si userà lo standard del punto decimale.

Per le proprietà delle potenze

$$=\sum_{n=0}^{+\infty} \left(\frac{1}{\varphi}\right)^n =$$

e riconosciamo una serie geometrica $1+r+r^2+r^3+\dots$ di ragione

$$r = \frac{1}{\varphi} =$$

ovvero ricordando la sezione aurea

$$=\frac{1}{\frac{1+\sqrt{5}}{2}}\approx 0.618$$

(oppure, ricordandone invece che il valore esatto il valore approssimato, 1.618, si calcola $\frac{1}{\varphi} \approx 1/1.618 \approx 0.618$), ragione che è fra -1 e 1 esclusi e allora la serie $1 + r + r^2 + r^3 + \dots$ converge con somma

$$s = \frac{1}{1 - r} = \frac{1}{1 - \frac{1}{\varphi}} \approx \frac{1}{1 - 0.618} \approx \frac{1}{1 - 0.618}$$

ESERCIZIO 4, %

Determinare la predittività, nel senso di valore predittivo positivo, di un test diagnostico per il quale si rilevano questi dati:

(Possiamo osservare, ma non è necessario per risolvere l'esercizio, che sensibilità e specificità sono del 99%).

SVOLGIMENTO. Si userà lo standard del punto decimale. Ricordando la definizione

predittività = Valore Predittivo Positivo =
$$VVP$$
 =

$$= \frac{\text{veri positivi}}{\text{totale positivi}} = \frac{V_{+}}{V_{+} + F_{+}}$$

ora abbiamo

$$VVP = \frac{990}{990 + 190} = \frac{990}{1180} \approx 0.838983$$

$$\approx 84\%$$

Nota. Ogni 100 testati positivi, 84 sono veri positivi e 16 sono falsi positivi. I falsi positivi sono parecchi, nonostante l'alta sensibilità e l'alta specificità, ma questo è normale con una malattia così poco comune, solo 1000 (cioè 990 + 10) malati su $20\,000$ persone $(990 + 10 + 190 + 18\,810)$, il 5%. Verifichiamo che effettivamente la sensibilità è

$$S = \frac{V_+}{V_+ + F_-} = \frac{990}{990 + 10} = 0.99$$

e la specificità è

$$S = \frac{V_{-}}{V_{-} + F_{+}} = \frac{18\,810}{18\,810 + 190} = 0.99.$$

ESERCIZIO $5_{\mu} \approx$

Stimare il parametro λ di una densità esponenziale da questo campione: 16.62, 3.810, 35.97, 4.322, 2.725, 11.44, 0.6671, 14.85, 3.816, 12.54. Si dia il risultato con 2 cifre significative.

SVOLGIMENTO

Viene usato lo standard del punto decimale. La media aritmetica degli n=10 valori è $\bar{X}_n=10.676$. Lo stimatore di massima verosimiglianza è il reciproco della media

$$\hat{\lambda} = \frac{1}{\bar{X}_n} \approx$$

con 2 cifre significative

$$\approx 0.094.$$

Nota. Salvo approssimare i valori a 4 cifre significative, il campione era stato ottenuto su WolframAlpha con parametero 0.1, abbastanza vicino allo 0.094 trovato con lo stimatore, con l'istruzione

10 random numbers exponential distribution lambda=0.1 che naturalmente, se richiamata da qua, in generale darà altri 10 numeri, sempre provenienti da quella variabile aleatoria esponenziale simulata, con vero parametro $\lambda=0.1$. Di volta in volta lo stimatore darebbe diversi valori per $\hat{\lambda}$, "vicini" al vero $\lambda=0.1$.